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Automated Identification of Regions Around Saturn
Currently scientists spend substantial amounts of time hand-labeling 
data to identify boundary crossings.

List of ~3k bow shock and magnetopause crossings from the Cassini 
mission spanning 2004 – 2016 using both magnetometer and CAPS 
data (until 2012).


Problem 1: Can we automate region selection using more limited 
datasets (i.e., using only magnetometer data)?


Problem 2: Can we use different datasets (MIMI/CHEMS/LEMMS & 
MAG & CAPS) and get similar identification results?


Ultimate goal: Develop a proxy algorithm for identification/
classification that will operate on-board the spacecraft

Explored two main approaches: Recurrent Neural Networks 
(RNN) with feature-limited data, and simpler classifiers 
including support vector machines (SVM), logistic regression 
(LR) and random forests (RF)
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Defining characteristics of the different regions 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Example of crossings between the magnetosheath 
(pink) and solar wind (orange)

Example of crossings between the magnetosheath 
(pink) and magnetosphere (purple)

Clear discrepancy in the running mean and variance of |B| between the 
different regions – indicates a time series based approach could be useful



Correcting for Imbalanced Datasets 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The dataset is heavily weighted towards data 
collected within the magnetosphere, due to a bias of 
orbits within that region. 


Knowing the geometry of the problem, we can 
automatically exclude points not close to region 
transitions with only knowledge of the spacecraft’s 
location. 


Low R ! within the magnetosphere

Conservatively define an inner radius within which the 
S/C is definitely within the magnetosphere


Local time near midnight ! within the 
magnetosphere

Conservatively define a time range for which the S/C 
is definitely within the magnetosphere




Dataset Preprocessing
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Large year-to-year variations in the orbit for Cassini 
means time-based splitting on a yearly basis (i.e., 
reserving an entire year for training) will result in a biased 
model


Instead, utilize time-based splitting on a smaller scale, 
with dedicated ”buffer” regions between the training, 
validation and test sets that are discarded

- Ensures no overlap between the three sets

- Should have relatively consistent S/C locations, 

preventing a biased model


- 105 hours for training (70%)

- 22.5 hours for test/validation (15%)

- 6 hour buffer periods between data (18 hours total)

Training Validation Test

One week

6 hour buffer

Seeking training, validation and tests sets to be as evenly 
distributed in S/C location as possible



Feature Importance and Data Availability
- Interested in the impact of feature selection on the performance of the classification algorithm

- Features included:


- 1-minute interpolated magnetometer (MAG) data in KRTP coordinate frame: |B|, Bϴ, BR, BΦ


- 10-minute interpolated MAG data

- 10-minute interpolated CAPS/CHEMS/LEMMS data


▪ Explored using the full dataset (194 features)

▪ Explored using a subset of the dataset deemed most important during manual boundary selection by scientists


o CAPS/ELS 10eV electrons

o CAPS/ELS 100 eV electrons

o CAPS/ELS 10 keV electrons

o CHEMS 4 keV protons

o CHEMS 7 keV protons

o LEMMS 40 keV protons


- For RNN, needed large quantities of data so only explored the MAG data

- For other classification algorithms, explored using various combinations 

- Algorithms are given zero knowledge about the S/C location


- Location information is used to ensure no bias is present in the training, validation or test sets

- Location information used in interpretation of the results
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Classification Algorithm Approach
Simple classifier approach: Classify the region the spacecraft was in using only a single time step of data


- Algorithms explored: Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression (LR)

- Tuning for the RF approach included the number of trees and the minimum number of samples needed to split a branch

- Explored the impact of different data sets on the resulting algorithm accuracy (MIMI – CHEMS & LEMMS, MAG, and 

CAPS) – using 10-minute interpolated data sets


RNN approach: With time series as input, classify the region the spacecraft was in on the last time step


- Due to data availability, were limited to only using magnetometer data (1-minute interpolated data set)


- Time series may or may not include a boundary crossing


- Iterated on:

- Number of layers of RNN LSTM (1 or 2)

- Number of neurons within the LSTM layer

- Length of the time series (20, vs. 40 vs. 60 minute iterations)


- Controlled for overfitting by:

- Including dropout 

- Early stopping on training when validation loss plateaued
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RF/SVM/LR Classifier Results
Dataset Classifier Num. 

Features
Train 
Accuracy

Test 
Accuracy

MAG SVM 4 0.785 0.785

MAG LR 4 0.788 0.788

MAG RF 4 0.839 0.822

Some Ion RF 6 0.728 0.740

MAG + 
Some Ion

RF 10 0.887 0.871

Full Ion RF 194 0.875 0.861

MAG + Full 
Ion

RF 198 0.957 0.913
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MAG + Full Ion

MAG + Some IonMAG

Full Ion

Confusion Matrices for RF Models

- Random Forest approach substantially out-performs logistic 
regression and SVM approaches for every feature combination


- Best combination of features is magnetometer dataset plus full MIMI 
and CAPS datasets


- MAG data alone does fairly good job at discriminating between 
the different regions; confusion stemming around boundary 
transitions


- Adding in the full set of ion data strongly increases the 
performance on the magnetosphere and solar wind regions, with 
some confusion still around the magnetopause



RNN Results: Predictions in the Absence of a Boundary Crossing
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20 Minutes of Data 40 Minutes of Data 60 Minutes of Data

- Find increasing accuracy as move to deeper and larger networks, but also have increasing likelihood of 
overfitting


- No significant differences between the various RNN models in classifying data segments which do not 
contain a boundary


- Strongest performance when classifying Magnetosphere or Solar Wind

- Weakest performance in classifying Magnetosheath mainly due to confusion with the Magnetosphere

Maximum performance achieved ~ 92.5%



RNN Results: Predictions in the Presence of a Boundary 
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20 Minutes of Data 40 Minutes of Data 60 Minutes of Data

For samples which contain a boundary, much better predictions of the region after the transition as we move 
to longer time series

- Largest jump in improvement appears as transition from 20 minutes of data fed into RNN to 40 minutes of 

data

- Modest improvement, but significantly larger network required for 60 minutes of data


Hypothesize that improvements in accuracy are due to having better understanding of the gradients in the 
feature vectors ! gradients are more significant than feature values for classifying a time segment



RNN Results: Understanding Where Errors Occur Spatially
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- Results shown for 40-time-step, 1-layer 
model


- No information on the spacecraft’s location was 
given to the model, but results show the 
physicality of the problem was learned


- Magnetosphere is closest to the planet, followed by 
magnetosheath and solar wind


- |B| provides a clear indication of the distance to the 
planet (higher as you move closer in to Saturn)


- Areas of confusion appear to be near the 
boundary crossings


- Over-prediction of magnetosphere appears to coincide 
spatially with underprediction of the magnetosheath


- Solar wind is likewise confused with the 
magnetosheath


- Need to investigate outlier “bins” where there was 
substantial over-/under-prediction (blue/red bins)


- Possible bias in spacecraft latitude in these 
areas?




RNN Results: Understanding Where Errors Occur Temporally

5 February 2021 12

- Bias in how Cassini’s 
orbits were planned leads 
to discrepancies in where 
the errors occur based on 
time


- Are there particular S/C 
locations where we are 
more likely to get a 
prediction wrong?


- Are there abnormal 
feature values occurring in 
areas that are predicted 
incorrectly? The correctly classified samples (black line) appear to accumulate at a constant rate.


The incorrectly classified samples (red line) appear to have large chunks of 
accumulation, showing that there are particular orbit locations where the model fails 
consistently.



RNN Results: Understanding Where Errors Occur Temporally
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- Look at each testing interval since 
the test samples are separated by 
design on a weekly basis


- Clearly have large spikes in errors 
for particular intervals (also 
indicated by the CDF)


- Difference in the number of 
boundary crossings in a test 
interval


- Are these real small-scale boundary 
transitions?


- Alternatively, is the model unstable?


- Overall the BSI/BSO and MPI/
MPO crossings that are predicted 
appear to coincide with those 
labeled




Comparison between RF with full ion + MAG dataset and RNN 
with just MAG data
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RF with MAG & MIMI & CAPS RNN with only MAG

RF approach uses significantly less 
data (10 minute resolution versus 1 
minute resolution of RNN), but each 
data point is much richer in feature 
depth (~200 features versus 4 – 8 for 
RNN)


RF is only predicting on a single time 
step, while RNN uses 20 – 60 time 
steps


RF is able to approach the 
accuracy of the RNN, only 
suffering with the magnetosheath 
predictions


RF could likely be run on current 
spacecraft hardware

Best RF Result: 91.3%

Best RNN Result: 92.5%



Conclusions
• Mission design significantly biases the dataset


- Despite 12 years of relatively continuous data collection, Cassini only sparsely sampled the entire 
magnetosphere and magnetosheath around Saturn


- Need to adequately capture the diversity of the dataset in the training, validation and test sets

- Incremental parsing of training, validation and test sets with buffer periods insures each set is unique while 

representative of the entire orbit


• Using only magnetometer data can provide relatively accurate classifications of different 
regions when used with a sufficiently complex model

- Maximum RNN accuracy achieved is ~92% on unseen test set


• Much simpler models, given more feature-rich data can perform nearly as well

- Maximum RF accuracy achieved is ~91% on unseen test set

- Substantially less data is needed to train


• Simpler models may be feasibly run on-board spacecraft with current hardware

- RAD-hard GPUs not yet commercially available

- Simpler ML models do not require fancy hardware
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Understanding the Results in Time
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Is the RNN model generally picking up on 
boundary transitions?

- Where is it accurately predicting the 

boundary? Where is it getting it wrong?

- How is the S/C approaching the 

boundary? S/C speed/angle of attack 
relative to the boundary movement?


- Is it picking up on finer-scale boundary 
processes that are real? Or is the model 
overtrained?


- How does the model change when 
using longer or shorter time frames to 
classify the end point?

- Hypothesize that longer time 

frames will allow for better 
classification (model has more 
context)



Clean Transitions versus Messy Transitions
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Variance of the features appears to be more important than the absolute values for classifying a 
particular sample ! longer time sequences should provide more context for the variance of a 
particular sample and provide better classifications



RNN Results
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Model Type Train. Set 
Accuracy

Val. Set 
Accuracy

Test Set 
Accuracy

Train. Set Loss Val. Set Loss Test Set Loss

RNN, 1-layer, 
20 step

0.9286 0.9244 0.9174 0.1965 0.2313 0.2361

RNN, 2-layer, 
20 step

0.9269 0.9218 0.9143 0.1974 0.2354 0.2395

RNN, 1-layer, 
40 step

0.9400 0.9267 0.9226 0.1655 0.2234 0.2222

RNN, 2-layer, 
40 step

0.9428 0.9271 0.9241 0.1565 0.2242 0.2213

RNN, 1-layer, 
60 step

0.9435 0.9317 0.9247 0.1553 0.2151 0.2161

RNN, 2-layer, 
60 step

0.9455 0.9267 0.9220 0.1474 0.2239 0.2230

Increasing accuracy but also increasing likelihood of overfitting as move to deeper 
networks and longer time segments. Over-fitting controlled by dropout and early stopping.



RNN Results: Understanding Where Errors Occur Spatially
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• Results shown for 40-time-step, 1-layer 
model


• Clear bias in the sampling due to 
Cassini’s orbits


• Limits imposed by the data processing 
also resulted in no predictions on the 
backside of the planet or within a close 
radius


• Model is able to correctly predict the 
regions for a vast majority of the 
samples



Overall Prediction Accuracy
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20 Minutes of Data 40 Minutes of Data 60 Minutes of Data

No significant difference in the overall prediction accuracy between the various models



Predictions in the Presence of a Boundary Crossing
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20 Minutes of Data 40 Minutes of Data 60 Minutes of Data



Predictions in the Absence of a Boundary Crossing
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20 Minutes of Data 40 Minutes of Data 60 Minutes of Data



Overall Prediction Accuracy
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20 Minutes of Data 40 Minutes of Data 60 Minutes of Data

No significant difference in the overall prediction accuracy between the various models


